Перевод: с русского на все языки

со всех языков на русский

анализ смеси

  • 1 анализ смеси

    1) composite analysis

    2) compound analysis

    Русско-английский технический словарь > анализ смеси

  • 2 анализ смеси

    Универсальный русско-английский словарь > анализ смеси

  • 3 анализ смеси

    composite analysis, compound analysis

    Русско-английский научно-технический словарь Масловского > анализ смеси

  • 4 структурно-групповой анализ смеси углеводородов

    Универсальный русско-английский словарь > структурно-групповой анализ смеси углеводородов

  • 5 анализ

    1) analysis

    2) <engin.> examination
    активационный анализ
    анализ барический
    анализ взаимодействий
    анализ влияния
    анализ дисперсионный
    анализ затрат
    анализ излома
    анализ имитационный
    анализ кластерный
    анализ комбинаторный
    анализ конфлюентный
    анализ многомерный
    анализ многосторонний
    анализ на микроэлементы
    анализ на модели
    анализ напряжений
    анализ операционный
    анализ отказов
    анализ отмучиванием
    анализ перекрестный
    анализ побочный
    анализ последовательный
    анализ последствий
    анализ предельный
    анализ причинный
    анализ радиоактивности
    анализ разгонкой
    анализ размерностей
    анализ размерный
    анализ регрессивный
    анализ руд
    анализ сетевой
    анализ сжиганием
    анализ системный
    анализ сканированием
    анализ смеси
    анализ спроса
    анализ термогравиметрический
    анализ факторный
    анализ Фурье
    анализ цен
    анализ цепей
    анализ шифра
    анализ шума
    арбитражный анализ
    биохимический анализ
    валовой анализ
    вариационный анализ
    векторный анализ
    весовой анализ
    вещественный анализ
    волюмометрический анализ
    временной анализ
    гармонический анализ
    гранулометрический анализ
    дискретный анализ
    дисперсионный анализ
    дробный анализ
    зольный анализ
    иммерсионный анализ
    капельный анализ
    кинематический анализ
    ковариационный анализ
    количественный анализ
    колориметрический анализ
    кондуктометрический анализ
    конфлюэнтный анализ
    конформационный анализ
    корреляционный анализ
    кристаллографический анализ
    кулонометрический анализ
    люминесцентный анализ
    масс-спектральный анализ
    металлографический анализ
    множественный анализ
    мокрый анализ
    не попадать в анализ
    неорганический анализ
    непрерывный анализ
    нефелометрический анализ
    опережающий анализ
    органолептический анализ
    петрографический анализ
    пирохимический анализ
    поддаваться анализ
    полный анализ
    попадать в анализ
    последовательный анализ
    предварительный анализ
    приближенный анализ
    причинный анализ
    пробирный анализ
    проводить анализ
    радиоактивационный анализ
    радиометрический анализ
    растровый анализ
    регресионный анализ
    рентгенографический анализ
    рентгеноспектральный анализ
    рентгеноструктурный анализ
    рефрактометрический анализ
    седиментационный анализ
    систематический анализ
    ситовый анализ
    спектральный анализ
    спектрографический анализ
    спектрофотометрический анализ
    стробоскопический анализ
    струйный анализ
    структурный анализ
    сухой анализ
    тензорный анализ
    тепловой анализ
    термомагнитный анализ
    технический анализ
    титриметрический анализ
    турбидиметрический анализ
    цветовой анализ
    частичный анализ
    частотно-временной анализ
    частотный анализ
    численный анализ
    электрографический анализ
    элементарный анализ

    амплитудный анализ импульсовpulse-height analysis


    анализ барического поля<meteor.> pressure-field analysis


    анализ бесконечно малыхinfinitesimal calculus


    анализ граничных условийlimit analysis


    анализ деятельности предприятияbreak-even analysis


    анализ дымовых газовflue-gas analysis


    анализ изотопным разбавлениемisotope-dilution analysis


    анализ ковшовой пробыladle analysis


    анализ компромиссных решений<comput.> trade-off analysis


    анализ кривых разгонаtransient response analysis


    анализ межотраслвейх связей<comput.> input-output analysis


    анализ методом меченых атомовtracer analysis


    анализ методом оплавленияfusion analysis


    анализ методом сухого озоленияblow-pipe analysis


    анализ методом титрованияtitrimetric analysis


    анализ нелинейных системnon-linear system analysis


    анализ перекрестных связей<math.> cross-impact analysis


    анализ переходных процессовtransient analysis


    анализ плавлением в вакуумеvacuum-fusion analysis


    анализ потребительского спросаmarketing analysis


    анализ производственной деятельностиactivity analysis


    анализ рыночных цен по времениmarket trend


    анализ спектра вибрацииvibration spectrum analysis


    анализ стали при выпуске плавкиtapping analysis


    анализ сточных водsewage analysis


    анализ через синтезanalysis by synthesis


    машинный анализ цепейcomputerized circuit analysis


    плавка не попавшая в анализdiverted heat


    состав попадает в анализanalysis is in control


    фракционный анализ по плотностиfloat-and-sink analysis

    Русско-английский технический словарь > анализ

  • 6 анализ

    анализ м. Analyse f; лингв. мат.,мат. Analysis f; хим., мет. Bestimmung f; Untersuchung f
    анализ м. (данных, результатов, сигналов) Auswertung f
    анализ м. данных выч. Datenanalyse f; Datenauswertung f
    анализ м. зернистости геол. Korngrößenanalyse f; Korngrößenbestimmung f
    анализ м. кристаллов Kristallanalyse f; Röntgen-Feinstrukturanalyse f; матер. Röntgen-Feinstrukturuntersuchung f; Röntgen-Kristallstrukturanalyse f; Röntgen-Strukturanalyse f; Röntgen-Strukturuntersuchung f
    анализ м. методом меченых атомов яд. Indikatoranalyse f; Isotopenverfahren n; Spurenanalyse f
    анализ м. методом осаждения Fällungsanalyse f; Fällungsgsanalyse f; Fällungsmaßanalyse f
    анализ м. осаждением Fällungsanalyse f; Fällungsmaßanalyse f
    анализ м. почвы Bodenanalyse f; Bodenuntersuchung f
    анализ м. ткани текст. Aussetzen n des Musters
    анализ м. Фурье мат. Fourier-Analyse f; рад. Frequenzanalyse f; harmonische Analyse f
    анализ м. цепей Netzanalyse f; Netzwerkanalyse f; Stromkreisanalyse f
    анализ м. электрических цепей Netzanalyse f; Netzwerkanalyse f; Stromkreisanalyse f

    Большой русско-немецкий полетехнический словарь > анализ

  • 7 анализ Муди критического потока пароводяной смеси

    1. Moody's analysis of steam-water critical flow

     

    анализ Муди критического потока пароводяной смеси
    (с использованием модели в предположении о постоянной осевой скорости каждой фазы и равновесии фаз)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > анализ Муди критического потока пароводяной смеси

  • 8 анализ свежей бетонной смеси

    Construction: wet analysis

    Универсальный русско-английский словарь > анализ свежей бетонной смеси

  • 9 анализ дыхательной смеси

    Универсальный русско-немецкий словарь > анализ дыхательной смеси

  • 10 анализ состава смеси

    Универсальный русско-немецкий словарь > анализ состава смеси

  • 11 анализ состава смеси

    Russian-german polytechnic dictionary > анализ состава смеси

  • 12 покомпонентный анализ газовой смеси из бурового раствора

    Русско-английский словарь нормативно-технической терминологии > покомпонентный анализ газовой смеси из бурового раствора

  • 13 ферментный иммуносорбентный анализ

    = иммуноферментный анализ, ИФА
    [лат. fermentum — закваска; лат. immunis — свободный, избавленный от чего-либо и sorbeo — поглощать; греч. analysis — разложение, расчленение]
    высокочувствительный метод иммунохимического анализа на основе ферментсвязанного иммуносорбента (см. иммуносорбент), используемый для определения специфических антигенов (см. антиген) в сложной смеси. В наиболее распространенном варианте этого теста применяют два препарата антител (см. антитела): первичные антитела, специфические для тестируемого белка, адсорбируют на твердую подложку, к которой добавляют определенное количество анализируемого образца; затем для выявления комплекса "антитело—антиген" добавляют вторичные антитела, специфичные для другого участка тестируемого белка, которые конъюгированы с ферментом. Фермент катализирует изменение окраски специального субстрата, добавляемого в последнюю очередь, что регистрируется фотометрически. Этот тест широко используется для диагностики различных заболеваний.

    Толковый биотехнологический словарь. Русско-английский. > ферментный иммуносорбентный анализ

  • 14 покомпонентный анализ газовой смеси

    2) Oil&Gas technology chromathermographic analysis

    Универсальный русско-английский словарь > покомпонентный анализ газовой смеси

  • 15 покомпонентный анализ газовой смеси из глинистого раствора

    Универсальный русско-английский словарь > покомпонентный анализ газовой смеси из глинистого раствора

  • 16 смесь

    f. mixture; анализ смеси, composite analysis, compound analysis

    Русско-английский словарь математических терминов > смесь

  • 17 смесь


    * * *

    f. mixture;

    анализ смеси - composite analysis, compound analysis

    Русско-английский математический словарь > смесь

  • 18 смесь

    f.

    анализ смеси — composite analysis, compound analysis

    Русско-английский словарь по математике > смесь

  • 19 Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии

    1. NiO
    2. MgO
    3. CuO

    4.2. Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии

    Спектральному методу предшествует перевод анализируемой пробы в пятиокись ниобия.

    Метод основан на измерении интенсивности линий элементов примесей в спектре, полученном при испарении пятиокиси ниобия в смеси с графитовым порошком и хлористым натрием из канала графитового электрода в дуге постоянного тока.

    Массовую долю примесей в ниобии (табл. 4) определяют по градуировочным графикам, построенным в координатах: логарифм отношения интенсивности линии определяемого элемента и интенсивности фона (x004.gif) - логарифм концентрации определяемого элемента (lg C).

    4.2.1. Аппаратура, материалы и реактивы

    Спектрограф дифракционный типа ДФС-13 с решеткой 600 и 1200 штр/мм и трехлинзовой системой освещения щели или аналогичный прибор (фотоэлектрический прибор типа МФС). Допускается использовать спектрограф ДФС-8 с решеткой 1800 штрихов.

    Генератор дуговой типа ДГ-2 с дополнительным реостатом или генератор аналогичного типа.

    Выпрямитель 250 - 300 В, 30 - 50 А.

    Микрофотометр нерегистрирующий типа МФ-2 или аналогичного типа.

    Таблица 4

    Определяемая примесь

    Массовая доля примеси, %

    Никель

    1∙10-3 - 2∙10-2

    Алюминий

    5∙10-4 - 1∙10-2

    Магний

    1∙10-3 - 2∙10-3

    Марганец

    5∙10-4 - 5∙10-3

    Кобальт

    5∙10-4 - 3∙10-2

    Олово

    1∙10-3 - 1∙10-2

    Медь

    3∙10-3 - 5∙10-2

    Цирконий

    1∙10-3 - 2∙10-2

    Спектропроектор типа ПС-18, СП-2 или аналогичного типа.

    Весы аналитические.

    Весы торсионные типа ВТ-500.

    Ступка и пестик из органического стекла.

    Бокс из органического стекла.

    Электропечь муфельная с терморегулятором на температуру до 900 °С.

    Чашки платиновые.

    Станок для заточки графитовых электродов.

    Электроды графитовые, выточенные из графитовых стержней ОС. Ч. 7 - 3 диаметром 6 мм, заточенные на усеченный конус с площадкой диаметром 1,5 мм.

    Электроды графитовые, выточенные из графитовых стержней ОС. Ч. 7 - 3 диаметром 6 мм, с каналом глубиной 5 мм, внешний диаметр - 3,0 мм, внутренний диаметр - 2,0 мм, длина заточенной части - 6 мм.

    Порошок графитовый ОС. Ч. 8 - 4 по ГОСТ 23463-79.

    Фотопластинки спектрографические марок СПЭС и СП-2, размером 9´12/1,2 или 13´18/1,2, обеспечивающие нормальное почернение аналитических линий и близлежащего фона в спектре.

    Лампа инфракрасная ИКЗ-500 с регулятором напряжения РНО-250-0,5 или аналогичным.

    Спирт этиловый ректификованный по ГОСТ 18300-72, дважды перегнанный в кварцевом приборе.

    Никеля окись черная по ГОСТ 4331-78, ч.

    Алюминия окись безводная для спектрального анализа, х. ч.

    Магния окись по ГОСТ 4526-75, ч. д. а.

    Марганца (IV) окись по ГОСТ 4470-79, ч. д. а.

    Кобальта (II - III) окись по ГОСТ 4467-79, ч. или ч. д. а.

    Олова двуокись, ч. д. а.

    Циркония двуокись по ГОСТ 21907-76.

    Меди (II) окись по ГОСТ 16539-79.

    Натрий хлористый ОС. Ч. 6 - 1.

    Ниобия пятиокись, в которой содержание определяемых элементов не превышает установленной для метода нижней границы диапазона определяемых массовых долей.

    Проявитель:

    метол........................................................................................ 2,2 г

    натрий сернистокислый безводный по ГОСТ 195-77......... 96 г

    гидрохинон по ГОСТ 19627-74............................................. 8,8 г

    натрий углекислый по ГОСТ 83-79...................................... 48 г

    калий бромистый по ГОСТ 4160-74..................................... 5 г

    вода........................................................................................... до 1000 см3.

    Фиксаж:

    тиосульфат натрия кристаллический по СТ СЭВ 223-75... 300 г

    аммоний хлористый по ГОСТ 3773-72................................ 20 г

    вода........................................................................................... до 1000 см3.

    4.2.2. Приготовление буферной смеси

    Буферную смесь, состоящую из 90 % угольного порошка и 10 % хлористого натрия готовят, смешивая 0,9000 г угольного порошка и 0,1000 г хлористого натрия с 20 см3 спирта в течение 30 мин и высушивая под инфракрасной лампой.

    4.2.3. Приготовление образцов сравнения (ОС)

    Основной образец сравнения, содержащий по 1 % никеля, алюминия, магния, марганца, кобальта, олова, циркония и меди, готовят механическим истиранием и перемешиванием буферной смеси с окислами соответствующих металлов.

    Навески массой 0,0141 г окиси никеля, 0,0189 г окиси алюминия, 0,0186 г окиси магния, 0,0158 г окиси марганца (IV) 0,0136 г (II - III)-окиси кобальта, 0,0127 г двуокиси олова, 0,0125 г окиси меди и 0,0140 г двуокиси циркония помещают в ступке из органического стекла и добавляют 0,8818 г буферной смеси. Смесь тщательно перемешивают, добавляя спирт для поддержания смеси в кашицеобразном состоянии, в течение 1 ч и высушивают под инфракрасной лампой до постоянной массы.

    Последовательным разбавлением основного образца сравнения буферной смесью готовят серию образцов сравнения (ОС) с убывающей концентрацией определяемых элементов. Содержание каждой из определяемых примесей (в процентах на содержание металла в металлическом ниобии) и вводимые в смесь навески буферной смеси и разбавляемого образца приведены в табл. 5.

    Образцы сравнения хранят в полиэтиленовых банках с крышками.

    Таблица 5

    Обозначение образца

    Массовая доля каждой из определяемых примесей, %

    Масса навески, г

    буферной смеси

    разбавляемого образца

    ОС 1

    1∙10-1

    3,3930

    0,3770 (основной образец)

    ОС 2

    5∙10-2

    1,7700

    1,7700 (ОС 1)

    ОС 3

    2∙10-2

    2,3100

    1,5400 (ОС 2)

    ОС 4

    1∙10-2

    1,8500

    1,8500 (ОС 3)

    ОС 5

    5∙10-3

    1,7000

    1,7000 (ОС 4)

    ОС 6

    2∙10-3

    2,1000

    1,4000 (ОС 5)

    ОС 7

    1∙10-3

    1,5000

    1,5000 (ОС 6)

    ОС 8

    5∙10-4

    1,0000

    1,0000 (ОС 7)

    4.1.2 - 4.2.3. (Измененная редакция, Изм. № 1).

    4.2.4. Проведение анализа

    4.2.4.1. Перевод металлического ниобия в пятиокись ниобия

    Пробу металлического ниобия 1 - 3 г помещают в платиновую чашку и прокаливают в муфельной печи при температуре 800 - 900 °С в течение 2 ч. Полученную пятиокись ниобия в виде белого порошка охлаждают в эксикаторе, помещают в пакет из кальки к передают на спектральный анализ.

    4.2.4.2. Определение никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония

    Пробы и образцы сравнения готовят в боксе. Для этого 100 мг пробы и 100 мг буферной смеси или 100 мг образца сравнения и 100 мг пятиокиси ниобия тщательно растирают в плексигласовой ступке в течение 5 мин. Подготовленную пробу или образец сравнения набивают в каналы трех графитовых электродов, предварительно обожженных в дуге постоянного тока при 7 А в течение 5 с.

    Электроды устанавливают в штатив в вертикальном положении. Верхним электродом служит графитовый стержень, заточенный на конус. Между электродами зажигают дугу постоянного тока силой 7 А с последующим повышением (в течение 20 с) до 15 А. Электрод с пробой включен анодом.

    Во избежание выброса материала из кратера электродов, ток включают при сомкнутых электродах с их последующим разведением, величина которого контролируется по проекции на промежуточной диафрагме. Время экспозиции - 120 с, промежуточная диафрагма - 5 мм.

    Спектры в области длин волн 2500 - 3500 нм фотографируют с помощью спектрографа ДФС-13 с решеткой 600 штр/мм, используя трехлинзовую систему освещения щели на фотопластинку тип II чув. 15 ед., ширина щели спектрографа 15 мкм.

    4.2.4.3. Определение меди

    Пробу, приготовленную по п. 4.2.4.2, помещают в канал графитового электрода. Электрод с пробой или образцом сравнения служит анодом (нижний электрод). Верхним электродом является графитовый электрод, заточенный на конус. Между электродами зажигают дугу постоянного тока. В первые 15 с сила тока - 5 А, последующие 1 мин 45 с - 15 А. Полная экспозиция 120 с. Спектры фотографируют на спектрографе ДФС-13 с решеткой 1200 штр/мм с трехлинзовой осветительной системой. Фотопластинка типа ЭС чув. 9. Промежуточная диафрагма 0,8 мм. Шкалу длин волн устанавливают на 320 нм. Ширина щели спектрографа 15 мкм. Во время экспозиции расстояние между электродами поддерживают равным 3 мм.

    Спектр каждой пробы и каждого образца сравнения регистрируют на фотопластинке по три раза. Экспонированные пластинки проявляют, промывают водой, фиксируют, окончательно промывают и сушат.

    4.2.4.1 - 4.2.4.3. (Измененная редакция, Изм. № 1).

    4.2.4.4. Обработка результатов

    В каждой спектрограмме фотометрируют почернения аналитической линии определяемого элемента Sл+ф (табл. 6) и близлежащего фона Sф и вычисляют разность почернений DS = Sл+a - Sф.

    Таблица 6

    Определяемый элемент

    Длина волны аналитической линии, нм

    Алюминий

    309,2

    Магний

    279,5

    Марганец

    279,4

    Медь

    327,4

    Олово

    284,0

    Цирконий

    339,2

    Никель

    300,2

    Кобальт

    304,4

    По трем параллельным значениям DS1, DS2, DS3, полученным по трем спектрограммам, снятым для каждого образца, находят среднее арифметическое результатов x006.gif.

    От полученных средних значений x008.gif переходят к значениям x009.gif с помощью таблиц, приведенных в приложении к ГОСТ 13637.1-77.

    Используя значения lg C и x010.gif для образцов сравнения, строят градуировочный график в координатах x011.gif, lg C. По этому графику по значениям x012.gif для пробы определяют содержание примеси в пробе.

    Разность наибольших и наименьших из результатов трех параллельных и результатов двух анализов с доверительной вероятностью Р = 0,95 не должна превышать величин допускаемых расхождений, приведенных в табл. 7.

    Таблица 7

    Определяемый элемент

    Массовая доля, %

    Допускаемое расхождение, %

    параллельных определений

    результатов анализов

    Алюминий

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,006

    0,0002

    0,002

    0,004

    Цирконий

    0,001

    0,005

    0,01

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Магний

    0,001

    0,005

    0,01

    0,0006

    0,004

    0,006

    0,0001

    0,003

    0,004

    Марганец

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,006

    0,0002

    0,002

    0,004

    Медь

    0,005

    0,01

    0,06

    0,003

    0,003

    0,006

    0,02

    0,002

    0,002

    0,003

    0,01

    0,002

    Олово

    0,001

    0,005

    0,01

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Никель

    0,001

    0,005

    0,001

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Кобальт

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,005

    0,0002

    0,002

    0,003

    Допускаемые расхождения для промежуточных содержаний рассчитывают методом линейной интерполяции.

    4.2.4.5. Контроль правильности результатов

    Правильность результатов анализа серии проб контролируют для каждой определенной примеси при переходе к новому комплекту образцов сравнения, С этой целью для одной и той же пробы, содержащей определенную примесь в контролируемом диапазоне концентраций с использованием старого и нового комплектов образцов сравнения, получают четыре результата анализа и вычисляют средние арифметические значения. Затем находят разность большего и меньшего значений. Результаты анализа считают правильными, если указанная разность не превышает допускаемых расхождений результатов двух анализов пробы по содержанию определяемой примеси.

    Контроль правильности проводят для каждого интервала между ближайшими по содержанию образцами сравнения по мере поступления на анализ соответствующих проб.

    4.3. Массовую долю тантала, титана, кремния, железа, вольфрама, молибдена определяют по ГОСТ 18385.1-79 - ГОСТ 18385.4-79 или спектральными методами (пп. 4.3.1 - 4.3.3), кислорода и водорода - по ГОСТ 22720.1-77, азота - по ГОСТ 22720.1-77 или ГОСТ 22720.4-77.

    Допускается применять другие методы анализа примесей, по точности не уступающие указанным.

    При разногласиях в оценке химического состава его определяют по ГОСТ 18385.1-79 - ГОСТ 18385.4-79, ГОСТ 22720.1-77, ГОСТ 22720.1-77 и ГОСТ 22720.4-77.

    Массовую долю углерода определяют по ГОСТ 22720.3-77. Кроме анализатора АН-160, допускается использовать приборы АН-7529 и АН-7560.

    4.2.4.4. - 4.3. (Измененная редакция, Изм. № 1).

    4.3.1. Спектральный метод определения примесей титана, кремния, железа, никеля, алюминия, магния, марганца, олова, меди, циркония, при массовой доле каждой примеси от 0,001 до 0,02.

    Метод основан на возбуждении дугой постоянного тока и фотографической регистрации спектров образцов сравнения и спектров анализируемого материала, превращенного в оксиды прокаливанием, с последующим определением массовой доли примесей по градуировочным графикам, построенным в координатах: логарифм отношения интенсивности линии определяемого элемента к интенсивности фона lg(Iл/Iф) - логарифм массовой доли определяемого элемента lg C.

    Относительное среднее квадратическое отклонение, характеризующее сходимость результатов параллельных определений, при массовой доле каждой примеси 0,001 % составляет 0,15, при массовой доле каждой примеси 0,02 % - 0,11.

    Суммарная погрешность результата анализа с доверительной вероятностью Р = 0,95 при массовой доле примеси 0,00100 % не должна превышать ± 0,00023 % абс, при массовой доле примеси 0,0200 % - ± 0,0033 % абс.

    4.3.1.1. Аппаратура, материалы и реактивы

    Спектрограф ДФС-13 с решеткой 1200 штр/мм или аналогичный.

    Источник постоянного тока УГЭ, или ВАС-275-100, или аналогичный.

    Микроденситометр МД-100, или микрофотометр МФ-2, или аналогичный.

    Спектропроектор типа ПС-18, или ДСП-2, или аналогичный.

    Весы аналитические с погрешностью взвешивания не более 0,0002 г.

    Весы торсионные ВТ-500 или аналогичные с погрешностью взвешивания не более 0,002 г.

    Печь муфельная с терморегулятором, на температуру от 400 до 1100 °С.

    Шкаф сушильный типа СНОД 3.5.3.5.3.5./3М или аналогичный.

    Станок для заточки графитовых электродов.

    Ступки и пестики из оргстекла.

    Чашки платиновые по ГОСТ 6563-75.

    Фотопластинки спектральные: диапозитивные, СП-2, СП-ЭС, обеспечивающие в условиях анализа нормальные почернения аналитических линий и близлежащего фона в спектре.

    Порошок графитовый ос. ч. 8 - 4 по ГОСТ 23463-79 или аналогичный, обеспечивающий чистоту по определяемым примесям. Нижние электроды, выточенные из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, имеющие размеры, мм:

    высота заточенной части....................... 10

    диаметр заточенной части.................... 4,0

    глубина кратера...................................... 3,8

    диаметр кратера..................................... 2,5

    Верхние электроды из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, заточенные на усеченный конус с площадкой диаметром 1,5 мм, высотой заточенной конической части 4 мм.

    Натрий фтористый, ос. ч. 7 - 3.

    Ниобия пятиокись для оптического стекловарения, ос. ч. 7 - 3.

    Титана (IV) двуокись, ос. ч. 7 - 3.

    Кремния (IV) двуокись по ГОСТ 9428-73, ч. д. а.

    Железа (III) окись, ос. ч. 2 - 4.

    Никеля (II) закись, ч. д. а.

    Алюминия (III) окись, х. ч.

    Магния (II), ч. д. а.

    Марганца (IV) окись, ос. ч. 9 - 2.

    Олова (IV) окись, ч. д. а.

    Меди (II) окись (гранулированная) по ГОСТ 16539-79.

    Циркония (IV) двуокись, ос. ч. 6 - 2.

    Спирт этиловый ректификованный по ГОСТ 18300-87.

    Лак идитоловый, 1 %-ный спиртовый раствор.

    Метол по ГОСТ 25664-83.

    Гидрохинон по ГОСТ 19627-74.

    Натрий сернистокислый (сульфит) по ГОСТ 195-77.

    Натрий углекислый по ГОСТ 83-79.

    Калий бромистый по ГОСТ 4160-74.

    Натрия тиосульфат кристаллический по ГОСТ 244-76.

    Калий сернистокислый пиро (метабисульфит).

    Вода дистиллированная по ГОСТ 6709-72.

    Проявитель, готовят следующим образом: 2 г метола, 52 г сульфита натрия, 10 г гидрохинона, 40 г углекислого натрия, 5 г бромистого калия растворяют в воде, в указанной последовательности доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Фиксаж, готовят следующим образом: 250 г тиосульфата натрия и 25 г метабисульфита калия растворяют в указанной последовательности в 750 - 800 см3 воды, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Допускается применять проявитель и фиксаж, рекомендованные для применяемых фотопластинок.

    Основная смесь, представляющая собой механическую смесь оксида ниобия и оксидов определяемых элементов с массовой долей каждой примеси 1 % в расчете на содержание металла в смеси металлов. Для ее приготовления каждый препарат оксида помещают в отдельную чашку, прокаливают в течение 90 мин в муфельной печи при температурах, указанных в табл. 7, охлаждают в эксикаторе и берут навески, указанные в табл. 7а. Переносят в ступку сначала приблизительно одну четвертую часть навески пятиокиси ниобия, затем полностью навески оксидов всех элементов-примесей и тщательно растирают смесь в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. Затем в ту же ступку переносят оставшуюся часть навески пятиокиси ниобия и опять тщательно растирают смесь в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, а затем прокаливают при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе.

    Промежуточная смесь и рабочие образцы сравнения (РОС1 - РОС4); готовят, смешивая указанные в табл. 7б массы пятиокиси ниобия, основной смеси, промежуточной смеси и рабочего образца сравнения РОС2. Перед взятием навесок пятиокись ниобия прокаливают 90 мин при (950 ± 20) °С, а ОС, ПС и РОС2 - при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе. Смешивают тщательным растиранием в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, прокаливают при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе.

    Буферная смесь 95 % графитового порошка и 5 % фтористого натрия. Навески помещают в ступку и тщательно растирают в течение 30 мин.

    4.3.1.2. Проведение анализа

    Навеску порошка металлического ниобия массой 0,5 г помещают в платиновую чашку, прокаливают в муфельной печи при температуре 800 - 850 °С в течение 2 ч и охлаждают в эксикаторе. Переносят в ступку и смешивают с буферной смесью в соотношении 2:1 (по массе), помещают в пакет из кальки.

    Каждый из рабочих образцов сравнения РОС1 - РОС4 также смешивают с буферной смесью в соотношении 2:1 (по массе).

    Верхние и нижние электроды обжигают в дуге переменного тока при силе тока 10 А в течение 10 с.

    Каждой из полученных смесей (смесь, полученная из навески пробы, и полученные из РОС1 - РОС4) плотно заполняют кратеры шести нижних электродов неоднократным погружением электродов в пакет со смесью. После этого в каждый нижний электрод помещают 2 капли спиртового раствора идитолового лака. Подсушивают электроды в сушильном шкафу при температуре 80 - 90 °С в течение (15 ± 1) мин.

    В кассету спектрографа помещают:

    в коротковолновую область спектра - диапозитивную фотопластинку;

    в длинноволновую - фотопластинку марки СП-2.

    Нижний электрод (с материалом пробы или с материалом рабочего образца сравнения) включают анодом дуги постоянного тока. Спектры фотографируют при следующих условиях:

    сила тока................................................ 10 ± 0,5 А

    межэлектродный промежуток............. 2 мм

    экспозиция............................................. (40 ± 3) с

    щель спектрографа................................ (0,020 ± 0,001) мм

    промежуточная диафрагма.................. (5,0 ± 0,1) мм

    деление шкалы длин волн.................... (303,0 ± 2,5) нм

    Фотографируют по три раза спектр каждого рабочего образца сравнения и по три раза спектр каждой пробы, используя для каждого образца сравнения (или пробы) три из шести нижних электродов. Затем фотографирование спектров повторяют, используя оставшиеся три заполненных пробой (образцом сравнения) нижних электрода.

    Экспонированные фотопластинки проявляют, промывают водой, фиксируют, окончательно промывают водой и сушат.

    4.3.1.3. Обработка результатов

    В каждой фотопластинке фотометрируют почернения аналитических линий определяемого элемента Sл+ф(табл. 7в) и близлежащего фона Sф и вычисляют разность почернений DS = Sл+ф - Sф.

    По трем значениям DS1, DS2, DS3, полученным из трех спектрограмм, снятым для каждого образца на одной фотопластинке, находят среднее арифметическое DS. От полученных значений DS переходят к значениям lg(Iл/Iф) с помощью таблиц, приведенных в ГОСТ 13637.1-77.

    Таблица 7а

    Наименование препарата

    Формула

    Температура прокаливания перед взвешиванием, °С (пред. откл. ± 20 °С)

    Масса навески прокаленного препарата оксида, г

    Коэффициент пересчета массы металла на массу оксида

    Масса металла в навеске оксида, г

    Массовая доля металла в смеси металлов, %

    Пятиокись ниобия

    Nb2O5

    950

    10,2996

    1,4305

    7,2000

    90

    Двуокись титана

    TiO2

    1100

    0,1334

    1,6680

    0,0800

    1

    Двуокись кремния

    SiO2

    1100

    0,1711

    2,1393

    0,0800

    1

    Окись железа

    Fe2O3

    800

    0,1144

    1,4297

    0,0800

    1

    Закись никеля

    NiO

    600

    0,1018

    1,2725

    0,0800

    1

    Окись алюминия

    Al2O3

    1100

    0,1512

    1,8895

    0,0800

    1

    Окись магния

    MgO

    1100

    0,1327

    1,6583

    0,0800

    1

    Окись марганца

    MnO2

    400

    0,1266

    1,5825

    0,0800

    1

    Окись олова

    SnO2

    600

    0,1016

    1,2696

    0,0800

    1

    Окись меди

    CuO

    700

    0,1001

    1,2518

    0,0800

    1

    Двуокись циркония

    ZrO2

    1100

    0,1081

    1,3508

    0,0800

    1

    11,5406

    8,0000

    100

    Используя значения lg C (где С - массовая доля определяемой примеси по табл. 7б) и полученные по первой фотопластинке значения lg(Iл/Iф) для рабочих образцов сравнения РОС1 - РОС4, строят градуировочный график в координатах lgC, lg(Iл/Iф). По этому графику, используя полученное по той же фотопластинке значение lg(Iл/Iф) для пробы, определяют массовую долю примеси в пробе - первый из двух результатов параллельных определений данной примеси.

    Таблица 7б

    Обозначение образца

    Массовая доля каждой примеси в расчете на содержание металла в смеси металлов, %

    Масса навески, г

    Суммарная масса смеси оксидов, содержащая 8 г металла, г

    прокаленного препарата пятиокиси ниобия

    разбавляемого образца (в скобках приведено его обозначение)

    Промежуточная смесь

    0,100

    10,2996

    1,1541 (ОС)

    11,4537

    РОС1

    0,020

    9,1552

    2,2907 (ПС)

    11,4459

    РОС2

    0,009

    10,4140

    1,0308 (ПС)

    11,4443

    POС4

    0,004

    10,1726

    1,2716 (РОС2)

    11,4442

    РОС3

    0,003

    11,1007

    0,3436 (ПС)

    11,4443

    Таблица 7в

    Определяемый элемент

    Аналитическая линия, нм

    Магний

    285,21

    Кремний

    288,16

    Марганец

    294,92

    Никель

    300,25

    Железо

    302,06

    Титан

    307,86

    Алюминий

    308,22

    Цирконий

    316,60

    Олово

    317,50

    Медь

    327,47

    Результат второго параллельного определения получают таким же образом по второй пластинке.

    Разность большего и меньшего результатов параллельных определений с доверительной вероятностью Р = 0,95 не должна превышать допускаемого расхождения, указанного в табл. 7г.

    Таблица 7г

    Массовая доля примеси, %

    Абсолютное допускаемое расхождение двух результатов параллельных определений, %

    0,0010

    0,0004

    0,020

    0,006

    Допускаемое расхождение для промежуточных значений массовой доли примеси, не указанных в таблице, находят методом линейного интерполирования.

    Если этот норматив удовлетворяется, вычисляют результат анализа - среднее арифметическое результатов двух параллельных определений.

    4.3.1.4. Контроль правильности результатов - по п. 4.2.4.5.

    4.3.2. Спектральный метод определения примесей вольфрама, молибдена и кобальта при массовой доле каждой примеси от 0,001 до 0,01 %

    Метод основан на возбуждении дугой постоянного тока и фотографической регистрации спектров образцов сравнения и анализируемого материала, превращенного в оксиды прокаливанием, с. последующим определением массовой доли примесей по градуировочным графикам.

    Относительное среднее квадратическое отклонение, характеризующее сходимость результатов параллельных определений каждой примеси, составляет 0,17 - при массовой доле примеси и 0,10 - при массовой доле примеси 0,005 - 0,010 %.

    4.3.2.1. Аппаратура, материалы и реактивы

    Спектрограф ДФС-13 с решеткой 600 штр/мм или аналогичный.

    Источник постоянного тока ВАС-275-100 или аналогичный.

    Микрофотометр МФ-2 или аналогичный.

    Спектропроектор ДСП-2 или аналогичный.

    Шкаф сушильный типа СНОД 3.5.3.5.3.5/3М или аналогичный.

    Весы аналитические с погрешностью взвешивания не более 0,0002 г.

    Весы торсионные ВТ-500 или аналогичные.

    Печь муфельная с терморегулятором на температуру от 400 до 1000 °С.

    Электроплитки с закрытой спиралью и покрытием, исключающим загрязнение определяемыми элементами.

    Станок для заточки графитовых электродов.

    Ступки и пестики из оргстекла.

    Чашки платиновые по ГОСТ 6563-75.

    Эксикаторы.

    Фотопластинки формата 9´12 см спектральные тип II и ЭС или аналогичные, обеспечивающие в условиях анализа нормальные почернения аналитических линий и фона в спектре.

    Нижние электроды типа «рюмка», выточенные из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, имеющие размеры, мм:

    высота «рюмки»...................... 5

    глубина кратера...................... 3

    диаметр кратера...................... 4

    диаметр шейки........................ 3,5

    высота шейки.......................... 3,5

    Верхние электроды - стержни диаметром 6 мм из графита ос. ч. 7 - 3, заточенные на цилиндр диаметром 4 мм.

    Кислота соляная по ГОСТ 14261-77, ос. ч.

    Ниобия пятиокись, ос. ч. 7 - 3, в спектре которой в условиях анализа отсутствуют аналитические линии определяемых примесей.

    Вольфрама (VI) окись, ч. д. а.

    Молибдена (IV) окись, ч. д. а.

    Кобальта (II, III) окись по ГОСТ 4467-79.

    Сурьмы (III) окись, х. ч.

    Свинец хлористый.

    Калий сернокислый, ос. ч. 6 - 4.

    Спирт этиловый ректификованный по ГОСТ 18300-87.

    Метол по ГОСТ 25664-83.

    Гидрохинон по ГОСТ 5644-75.

    Натрий сернистокислый (сульфит) по ГОСТ 195-77.

    Калий бромистый по ГОСТ 4160-74, ч. д. а.

    Натрий углекислый по ГОСТ 83-79, ч. д. а.

    Натрия тиосульфат кристаллический по ГОСТ 244-76.

    Калий сернистокислый пиро (метабисульфит).

    Вода дистиллированная по ГОСТ 6709-72.

    Посуда химическая термостойкая: стаканы вместимостью на 100, 500 и 1000 см3, воронки.

    Проявитель, готовят следующим образом: 2 г метола, 52 г сульфита натрия, 10 г гидрохинона, 40 г углекислого натрия, 5 г бромистого калия растворяют в воде в указанной последовательности, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Фиксаж, готовят следующим образом: 250 г тиосульфата натрия и 25 г метабисульфита калия растворяют в указанной последовательности в 750 - 800 см3 воды, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Допускается применять проявитель и фиксаж, рекомендованные для применяемых фотопластинок.

    Буферная смесь, готовят следующим образом: тщательно растирают в ступке 7,4900 г хлористого свинца, 2,5000 г сернокислого калия, 0,0100 г окиси сурьмы. Время истирания на виброистирателе 40 - 50 мин, вручную - 90 - 120 мин.

    Основная смесь, представляющая собой механическую смесь оксидов ниобия и определяемых примесей с массовой долей каждой примеси 1 % в расчете на содержание металла в смеси металлов. Для приготовления смеси каждый препарат оксидов помещают в отдельную чашку, прокаливают в течение 90 мин в муфельной печи при температурах, указанных в табл. 7д, охлаждают в эксикаторе и берут навески, указанные в табл. 7д. Переносят в ступку сначала приблизительно 1/4 часть навески пятиокиси ниобия, затем полностью навески оксидов всех примесей и тщательно растирают смесь в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. Затем в ту же ступку переносят оставшуюся часть навески пятиокиси ниобия и опять тщательно растирают смесь в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, затем прокаливают при температуре (400 ± 20) °C в течение 60 мин и охлаждают в эксикаторе.

    Промежуточную смесь и рабочие образцы сравнения (РОС1 - РОС4) готовят, смешивая указанные в табл. 7е навески пятиокиси ниобия, основной смеси, промежуточной смеси и рабочего образца сравнения РОС1. Перед взятием навесок пятиокись ниобия прокаливают 90 мин при (950 ± 20) °С, а ОС, ПС и РОС1 - при температуре (400 ± 20) °С в течение 60 мин; охлаждают в эксикаторе. Смешивают тщательным растиранием в ступке в течение 90 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, прокалива

    Таблица 7д

    Наименование препарата

    Формула

    Температура прокаливания перед взвешиванием, °С

    Масса навески прокаленного препарата оксида, г

    Коэффициент пересчета массы металла на массу оксида

    Масса металла в навеске оксида, г

    Массовая доля металла в смеси металлов, %

    Пятиокись ниобия

    Nb2O5

    900 - 1000

    13,8759

    1,4305

    9,7000

    97

    Трехокись вольфрама

    WO3

    650

    0,1261

    1,2611

    0,1000

    1

    Трехокись молибдена

    MoO3

    450 - 500

    0,1500

    1,5003

    0,1000

    1

    Окись кобальта

    Со2О3

    800

    0,1407

    1,4072

    0,1000

    1

    14,2927

    10,0000

    100

    находят значения lg(Iл/Iф), пользуясь таблицами по ГОСТ 13637-77. Используя значения lg C ( где С - массовая доля вольфрама по табл. 7е) и полученные по первой фотопластинке значения lg(Iл/Iф) для рабочих образцов сравнения РОС1 - РОС4, строят градуировочный график в координатах lgC, lg(Iл/Iф). Поэтому графику, используя полученные по той же фотопластинке значения lg(Iл/Iф) для пробы, определяют массовую долю вольфрама в пробе - первый из двух результатов параллельных определений. Результат второго параллельного определения вольфрама получают таким же образом по второй фотопластинке.

    При определении молибдена и кобальта для каждого из трех спектров (пробы или образца сравнения), снятых на одной фотопластинке, находят значение DS = Sл - Scи вычисляют среднее арифметическое трех значений - значение x014.gif. По полученным значениям DS для образцов сравнения строят градуировочный график в координатах lgC, DS, где С - массовая доля определяемого элемента в образцах сравнения согласно табл. 7. По этому графику, используя полученные по той же фотопластинке значения DS для пробы, определяют массовую долю определяемого элемента в пробе - первый из двух результатов параллельных определений. Результат второго параллельного определения получают таким же образом по второй фотопластинке.

    Таблица 7е

    Обозначение образца

    Массовая доля каждой из определяемых примесей, в расчете на содержание металла в смеси металлов, %

    Масса навески, г

    Суммарная масса смеси оксидов, содержащая 10 г металлов, г

    прокаленного препарата пятиокиси ниобия

    разбавляемого образца (в скобках приведено его обозначение)

    ПС

    0,100

    12,8745

    1,4293 (ПС)

    14,3038

    РОС1

    0,010

    12,8745

    1,4301 (ПС)

    14,3049

    РОС2

    0,004

    13,7328

    0,5722 (ПС)

    14,3050

    РОС3

    0,002

    14,0189

    0,2861 (ПС)

    14,3050

    РОС4

    0,001

    12,8745

    1,4305 (РОС1)

    14,3050

    Разность большего и меньшего результатов параллельных определений элемента с доверительной вероятностью Р = 0,95 не должна превышать допускаемого расхождения, приведенного в табл. 7ж и табл. 7з.

    Если этот норматив удовлетворяется, вычисляют результат анализа - среднее арифметическое двух результатов параллельных определений.

    Таблица 7ж

    Массовая доля примеси, %

    Абсолютное допускаемое расхождение двух результатов параллельных определений, %

    0,0010

    0,0005

    0,0050

    0,0014

    0,0100

    0,0028

    Допускаемые расхождения для промежуточных значений массовой доли примеси, не указанных в таблице, находят методом линейной интерполяции.

    4.3.2.4. Контроль правильности результатов - по п. 4.2.4.5.

    4.3.3. Экстракционно-фотометрический метод определения тантала (от 0,02 до 0,10 %)

    Метод основан на измерении оптической плотности толуольного экстракта фтортанталата бриллиантового зеленого.

    4.3.3.1. Аппаратура, материалы и реактивы

    Весы аналитические.

    Таблица 7з

    Определяемый элемент

    Аналитическая линия, нм

    Интервал определяемых значений массовой доли, %

    Вольфрам

    400,87

    От 0,001 до 0,01

    Молибден

    319,40

    » 0,001 » 0,004

    320,88

    » 0,001 » 0,01

    Кобальт

    340,51

    » 0,001 » 0,004

    345,35

    » 0,001 » 0,01

    Плитка электрическая лабораторная с закрытой спиралью мощностью 3 кВт.

    Центрифуга лабораторная, марки ЦЛК-1 или аналогичная.

    Колориметр фотоэлектрический концентрационный КФК-2 или аналогичный.

    Пипетки 1-2-2; 2-2-5; 2-2-10; 2-2-20; 2-2-25; 2-2-50; 6-2-10 по ГОСТ 20292-74.

    Цилиндры 1-500; 1-2000 по ГОСТ 1770-74.

    Бюретки 6-2-5; 1-2-100 по ГОСТ 20292-74.

    Колбы 2-100-2; 2-200-2; 2-500-2 по ГОСТ 1770-741

    Стакан В-1-100 ТС по ГОСТ 25336-82.

    Стакан фторопластовый с носиком вместимостью 100 см3.

    Банка БН-0,5, по ГОСТ 17000-71.

    Бидон БДЦ-5,0 по ГОСТ 17000-71.

    Пробки из пластмассы по ГОСТ 1770-74.

    Цилиндры из полиэтилена вместимостью 60 см3.

    Пробирки центрифужные из полиэтилена вместимостью 10 см3.

    Пипетки из полиэтилена вместимостью 10 см3.

    Кислота серная по ГОСТ 4204-77, х. ч. раствор 5 моль/дм3 и 1,4 моль/дм3.

    Кислота азотная по ГОСТ 4461-77, х. ч.

    Кислота фтористоводородная по ГОСТ 10484-78, х. ч., раствор 7,5 моль/дм3.

    Раствор для отмывки экстрактов с концентрациями серной кислоты 1,18 моль/дм3 и фтористоводородной кислоты 0,98 моль/дм3. Для приготовления 5 дм3 раствора в полиэтиленовый бидон помещают 245 см3 раствора фтористоводородной кислоты 20 моль/дм3, 1175 см3 раствора серной кислоты 5 моль/дм3, 3580 см3 дистиллированной воды и перемешивают в течение 30 - 40 с.

    Бриллиантовый зеленый, ч., раствор 3 г/дм3, готовят растворением 3 г красителя в 1 дм3 воды на холоду в течение 1 ч при перемешивании с помощью электромеханической мешалки.

    Толуол по ГОСТ 5789-78, ч. д. а.

    Ацетон по ГОСТ 2603-79, ч. д. а.

    Аммоний сернокислый по ГОСТ 3769-78, х. ч.

    Порошок танталовый (высокой чистоты), с массовой долей тантала не менее 99,5 %.

    Вода дистиллированная по ГОСТ 6709-72.

    4.3.3.2. Подготовка к измерению

    4.3.3.2.1. Приготовление основного раствора и рабочих растворов

    Основной раствор пятиокиси тантала 0,200 г/дм3: навеску металлического порошка тантала 0,0819 г, взвешенную с погрешностью ± 0,0005 г, помещают во фторопластовый стакан, добавляют полиэтиленовой пипеткой 5,0 см3 концентрированной фтористоводородной кислоты, 0,5 см3 азотной кислоты, нагревают на плитке до полного растворения навески и упаривают до объема 1 - 2 см3. Раствор переводят в мерную колбу вместимостью 500 см3, в которую предварительно помещают 250 см3 дистиллированной воды, доводят до метки и перемешивают в течение 30 - 40 с. Приготовленный раствор хранят в полиэтиленовой посуде.

    Рабочие растворы пятиокиси тантала 2,0 и 20,0 мкг/см3 отбирают пипеткой 2,0 и 20,0 см3 основного раствора в мерные колбы вместимостью 200 см3, добавляют 56,0 см3 раствора серной кислоты 5 моль/дм3, доводят водой до метки и перемешивают в течение 30 - 40 с.

    4.3.3.2.2. Построение градуировочного графика

    В полиэтиленовые ампулы помещают из бюретки 2,0; 4,0; 6,0; 8,0; 10,0 см3 рабочего раствора 2,0 мкг/см3 и 1,0; 2,0; 3,0; 4,0; 5,0 см3 рабочего раствора 20,0 мкг/см3. Доводят раствором серной кислоты концентрации 1,4 моль/дм3 (2,8 н) до 10,0 см3, добавляют полиэтиленовой пипеткой 1,5 см3 раствора фтористоводородной кислоты 7,5 моль/дм3, 25,0 см3 толуола, добавляют из бюретки 11,0 см3 раствора бриллиантового зеленого и встряхивают в течение 60 с на электромеханическом встряхивателе или вручную. После расслаивания фаз в течение 60 - 90 с 10 см3 экстракта помещают в центрифужную пробирку и центрифугируют в течение 3 мин со скоростью 3000 мин-1.

    Оптическую плотность измеряют на КФК-2 в кюветах с толщиной слоя поглощения 5,0 мм в интервале 20 - 100 мкг пятиокиси тантала и 30,0 мм в интервале 4 - 20 мкг пятиокиси тантала при λmax = (590 ± 10) нм. В качестве раствора сравнения применяют толуол.

    Одновременно через все стадии проводят два параллельных контрольных опыта. Оптическая плотность контрольного опыта не должна превышать 0,03 в кювете 30 мм и 0,005 - в кювете 5 мм. По полученным данным строят два градуировочных графика.

    4.3.3.3. Проведение измерений

    Пробу массой 0,1000 г, взвешенную с погрешностью не более 0,0005 г, помещают во фторопластовый стакан, добавляют полиэтиленовой пипеткой 10 см3 концентрированной фтористоводородной кислоты, затем пипеткой 2,0 см3 азотной кислоты и 8,0 см3 концентрированной серной кислоты, нагревают на плитке до начала выделения паров серной кислоты, затем продолжают нагрев еще 2 - 3 мин. Стаканы охлаждают до температуры (25 ± 5) °С, добавляют 3,0 г сульфата аммония, разбавляют водой до 10 см3 и переводят в мерную колбу вместимостью 100 см3, доводят водой до метки и перемешивают 30 - 40 с.

    Аликвотную часть полученного раствора, содержащую 4 - 100 мкг пятиокиси тантала, помещают в полиэтиленовый цилиндр вместимостью 60 см3, доводят раствором серной кислоты концентрации 5 моль/дм3 до 10,0 см3, добавляют 1,5 см3 раствора фтористоводородной кислоты концентрации 7,5 моль/дм3 и оставляют на 8 - 10 мин. Далее добавляют пипеткой 25,0 см3 толуола, 11,0 см3 раствора бриллиантового зеленого и производят экстракцию, как описано в п. 4.3.3.2. После расслаивания фазы разделяют и экстракт в количестве 20 - 25 см3 отмывают. Добавляют 10,5 см3 раствора для отмывки (полиэтиленовой пипеткой), 10,0 см3 раствора бриллиантового зеленого из бюретки и встряхивают, как описано в п. 4.3.3.2. После расслаивания фазы разделяют и экстракт в количестве не менее 16,0 см3 вновь подвергают операции отмывки. После расслаивания фаз 10 см3 экстракта помещают в центрифужную пробирку и центрифугируют в течение 3 мин со скоростью 3000 об/мин.

    Оптическую плотность экстракта измеряют на КФК-2, как описано в п. 4.3.3.2.2. В закрытых полиэтиленовых пробирках экстракты стабильны в течение 4 ч. Допускается проведение экстракции и отмывки экстрактов одновременно в шестнадцати пробирках. Массу пятиокиси тантала определяют по градуировочному графику.

    4.3.3.4. Обработка результатов

    Массовую долю тантала (X) в процентах вычисляют по формуле

    x016.gif

    где m - масса пятиокиси тантала, найденная по градуировочному графику, мкг;

    m1- масса навески пробы, г;

    a - аликвотная часть раствора, отбираемая для экстракции, см3;

    V - объем мерной колбы, равный 100 см3;

    1,221 - коэффициент пересчета.

    За результат измерений принимают среднее арифметическое результатов двух параллельных определений.

    Допускаемые расхождения результатов двух параллельных определений не должны превышать значений допускаемых расхождений, приведенных в табл. 7и.

    4.3.3.5. Контроль правильности анализа

    Контроль правильности анализа проводят методом добавок.

    Суммарная массовая доля тантала в пробе с добавкой должна быть не меньше утроенного значения нижней границы определяемых массовых долей и не больше верхней границы определяемых массовых долей.

    Таблица 7и

    Массовая доля тантала, %

    Допускаемые расхождения, %

    0,02

    0,01

    0,05

    0,01

    0,10

    0,02

    Суммарное содержание тантала 1) в пробе с добавкой в процентах вычисляют по формуле

    x018.gif

    где Хан - массовая доля тантала в пробе, %;

    m1- масса тантала, введенная с добавкой, мкг;

    m2- масса навески пробы, г.

    Анализ считают правильным (Р = 0,95), если разность большей и меньшей из двух величин Х1и результата анализа пробы с добавкой не превышает

    x020.gif

    где d1- допускаемое расхождение между результатами двух параллельных определений в пробе без добавки;

    d2- допускаемое расхождение между результатами двух параллельных определений в пробе с добавкой.

    4.3.1 - 4.3.3.5. (Введены дополнительно, Изм. № 1).

    Источник: ГОСТ 26252-84: Порошок ниобиевый. Технические условия оригинал документа

    Русско-английский словарь нормативно-технической терминологии > Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии

  • 20 химическое вещество

    1. chemical agent

     

    химическое вещество
    реактив


    [ http://www.dunwoodypress.com/148/PDF/Biotech_Eng-Rus.pdf]

    Тематики

    Синонимы

    EN

    химическое вещество (chemical agent): Любой химический элемент или соединение, чистое или в смеси, существующее в природе или образовавшееся в результате трудовой деятельности, произведенное преднамеренно или нет с целью продажи или нет.

    [ЕН 1540:1998] [7]

    Источник: ГОСТ Р ИСО 20552-2011: Воздух рабочей зоны. Определение паров ртути. Отбор проб с получением амальгамы золота и анализ методом атомной абсорбционной или атомной флуоресцентной спектрометрии оригинал документа

    3.1.1 химическое вещество (chemical agent): Любой химический элемент или соединение, чистое или в смеси, существующее в природе или образовавшееся в результате трудовой деятельности, произведенное преднамеренно или нет, с целью продажи или нет.

    Источник: ГОСТ Р ИСО 15202-3-2008: Воздух рабочей зоны. Определение металлов и металлоидов в твердых частицах аэрозоля методом атомной эмиссионной спектрометрии с индуктивно связанной плазмой. Часть 3. Анализ оригинал документа

    3.1.1 химическое вещество (chemical agent): Любой химический элемент или соединение, чистое или в смеси, существующее в природе или образовавшееся в результате трудовой деятельности, в том числе в качестве отходов, произведенное преднамеренно или нет с целью продажи или нет.

    [ЕН 1540] [1]

    Источник: ГОСТ Р ИСО 21438-1-2011: Воздух рабочей зоны. Определение неорганических кислот методом ионной хроматографии. Часть 1. Нелетучие кислоты (серная и фосфорная) оригинал документа

    Русско-английский словарь нормативно-технической терминологии > химическое вещество

См. также в других словарях:

  • анализ Муди критического потока пароводяной смеси — (с использованием модели в предположении о постоянной осевой скорости каждой фазы и равновесии фаз) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN Moody s analysis of steam water critical flow …   Справочник технического переводчика

  • Анализ ситовой — способ определения гранулометрического состава сыпучего материала с помощью стандартных наборов сит, на которых производится разделение смеси частиц (зерен) на соответствующие фракции. [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Анализ термографический — – определение изменения массы химического соединения или многокомпонентной смеси в процессе нагревания. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ и м. А. А. Гвоздева, Москва, 2007 г. 110 стр.]… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Анализ — [гр. Analysis раскладка] – разложение целого на составные части, метод научного познания, исследование отдельных сторон состава, структуры, процессов и свойств путем установления одной или нескольких характеристик веществ и материалов.… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Анализ вещественный — – анализ содержания в материале химических элемен­тов; разновидность качественного и количественного химического анализа. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ и м. А. А. Гвоздева, Москва, 2007 …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Анализ гранулометрический — – определение относительного содержания частиц (зе­рен) разных размеров в массе исследуемой. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ и м. А. А. Гвоздева, Москва, 2007 г. 110 стр.] Анализ… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Анализ петрографический — – исследование количественных соотношении петрографических типов и разнов. обломков г. п. в осадках (морских, аллювиальных) для установления петрографических провинций, путей миграции обломков и связей морских провинций с питающими.… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Анализ проекта — – документированная, всесторонняя и систематическая проверка проекта с целью оценки его возможности выполнять требования к качеству, выявлять проблемы и определять способы их решения. Примечание. Анализ проекта может проводиться на любом… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Анализ рентгенографичес­кий — – методы исследования вещества по распределению и интенсивностям рассеянного рентгеновского излучения на анализируемом объекте. [Геологический словарь: в 2 х томах. М.: Недра. Под ред. К. Н. Паффенгольца и др.. 1978.] Анализ… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Анализ химический — – основан на определении состава химическими методами: качественный обнаружение элементов с их идентификацией и количественный установление массы или концентрации компонентов. [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • АНАЛИЗ ЛЮМИНЕСЦЕНТНЫЙ — метод определения U в пробах г. п. и руд, основанный на свойстве соединений U люминесцировать под воздействием ультрафиолетовых лучей. Предварительно производится хим. обработка проб (в смеси крепких кислот или в слабокислых и слабощелочных… …   Геологическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»